

27.4 (30-Me), 26.1 (28-Me), 21.1, 15.6 and 14.8 (18-, 19- and 29-Me).

Acetylation of compound 1. Acetylation of **1** (Ac₂O-pyridine, 50°, 24 hr) gave *7*_α,12*α*-diacetoxy-1,2-dihydroazadirone. EIMS *m/z*: 496[M]⁺, 436[M-AcOH]⁺, 376[M-2AcOH]⁺. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1740, 1720 (C=O) and 1250 (C-O); ¹H NMR (200 MHz, CDCl₃): δ 1.02 (6H), 1.04 (3H), 1.08 (3H), 1.19 (3H) [5 \times Me], 1.91 (3H, *s*, 12Ac), 2.00 (3H, *s*, 7*α*-Ac), 2.99 (1H, *dd*, *J*=9, 11 Hz, H-17), 5.07 (1H, *dd*, *J*=7.8 Hz, H-12) 5.27 (1H, *m*, H-15), 5.48 (1H, *t*, *J*=2.5 Hz, H-7), 6.27 (1H, *m*, H-22), 7.21 (1H, *m*, H-23) and 7.34 (1H, *m*, H-21).

Reaction of compound 1 with benzene seleninic anhydride. Compound **1** (100 mg) and benzene seleninic anhydride (80 mg) were refluxed for 30 min in chlorobenzene and the product, 12*α*-acetoxy-7-deacetylazadirone, purified by prep. TLC (silica gel, 20% EtOAc-hexane). EIMS *m/z*: 452[M]⁺, 392[M-AcOH]⁺, IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3540 *br* (OH), 1730, 1670 (C=O), 1100 (C-O). ¹H NMR (200 MHz, CDCl₃): δ 1.05 (3H), 1.09 (3H), 1.17 (3H), 1.19 (3H) [5 \times Me], 1.93 (3H, *s*, Ac), 3.08 (1H, *dd*, *J*=9, 10.8 Hz, H-17), 4.04 (1H, *t*, *J*=2.8 Hz, H-7), 5.16 (1H, *dd*, *J*=8.6, 9 Hz, H-

12), 5.70 (1H, *dd*, *J*=2, 3 Hz, H-15), 5.82 (1H, *d*, *J*=10 Hz, H-1) 6.28 (1H, *m*, H-22), 7.02 (1H, *d*, *J*=10 Hz, H-2), 7.23 (1H, *m*, H-23) and 7.36 (1H, *m*, H-21).

Acknowledgements—The authors thank Dr Ben Shoulders of the University of Texas for obtaining NMR spectra and the USDA (Grant 85-FSTY-0102) for financial support.

REFERENCES

1. Kokwaro, J. O. (1976) *Medicinal Plants of East Africa*, p.158. East African Literature Bureau, Nairobi, Kenya.
2. Akinnyi, J. A., Connolly, J. D., Mulholland, D. A., Rycroft, D. S. and Taylor, D. A. H. (1986) *Phytochemistry* **21**, 2187.
3. Taylor, D. A. H. (1983) in *Chemistry and Chemical Taxonomy of the Rutales* (Waterman, P. G. and Grundon, M. F., eds), p. 138. Academic Press, London.
4. Nakatani, M., Iwashita, T., Mizukawa, K. and Hase, T. (1987) *Heterocycles* **26**, 43.

Phytochemistry, Vol. 27, No. 7, pp. 2355-2357, 1988.
Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
© 1988 Pergamon Press plc.

PREPHYTOENE ALCOHOL FROM *MYRIOPHYLLUM VERTICILLATUM**

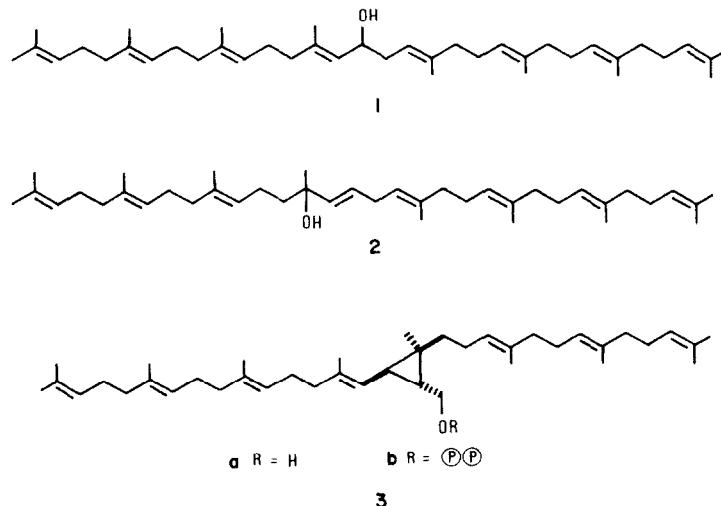
PIETRO MONACO, MARINA DELLA GRECA, MARGHERITA ONORATO and LUCIO PREVITERA

Department of Organic and Biological Chemistry of the University Via Mezzocannone 16, 80134 Napoli, Italy

(Received 20 October 1987)

Key Word Index—*M. verticillatum*; Haloragaceae; carotenoids; prephytoene alcohol.

Abstract—Prephytoene alcohol, a biosynthetic intermediate of carotenoids, has been isolated from the aquatic plant *Myriophyllum verticillatum*.


In a previous paper [1] we reported the isolation from the aquatic plant *M. verticillatum* of two novel hydroxylated carotenoids which were attributed structures **1** and **2** on the basis of their chemical and physical features. These compounds may easily be considered to arise through water addition to the cyclopropylcarbinyl cation intermediate produced by loss of pyrophosphate from prephytoene pyrophosphate (**3b**).

In pursuing the chemical investigation of this species we isolated a compound in small amount from the

etheral extract which has been identified as prephytoene alcohol (**3a**) on the basis of its spectroscopic features.

Compound **3a** had $[\alpha]_D + 37.5^\circ$ and a molecular formula C₄₀H₆₆O. The IR spectrum indicated the presence of a hydroxyl group and isolated double bonds with absorptions at 3400 and 1660 cm⁻¹. The mass spectrum showed, beside the molecular peak at *m/z* 562, fragments at *m/z* 544 [M-H₂O]⁺, 531 [M-CH₂OH]⁺, 529 [M-H₂O-Me]⁺, and the series of fragments due to allylic cleavages in the side chains at *m/z* 493 [M-C₅H₉]⁺, 475 [M-H₂O-C₅H₉]⁺, 425 [M-C₁₀H₁₇]⁺, 407 [M-H₂O-C₁₀H₁₇]⁺, 357 [M-C₁₅H₂₅]⁺, 339 [M-H₂O-C₁₅H₂₅]⁺, 271 [M-H₂O-C₂₀H₃₃]⁺, 203 [M-H₂O-C₂₄H₄₁]⁺, 137 [C₁₀H₁₇]⁺ and 69 [C₅H₉]⁺. The ¹H NMR spectrum showed the presence of methyl singlets at δ 1.15, 1.61 and 1.69 in a 1:6:3 ratio, a

* Part 8 in a series of studies on aquatic plants distributed in Italy. For part 7 see ref. [1].

hydroxyl bearing methylene as two double doublets (AB part of ABX system) centred at δ 3.55 and 3.84, six olefinic protons at δ 5.11, an olefinic proton as a doublet centered at δ 4.95 and two cyclopropyl protons as multiplets at δ 0.95 and 1.35. These data were identical with those reported by Campbell *et al.* [2] for synthetic (\pm) pre-phytoene alcohol. The ^{13}C NMR spectrum showed only 20 signals which were identified as carbon types by a DEPT experiment whereas an inverse gated decoupling experiment gave their relative intensities (Table 1). All the shieldings were attributed on the basis of the data reported by Crombie *et al.* [3] for presqualene esters and related cyclopropanes. The presence of two methines at δ 28.61 and 34.85 and a quaternary carbon at δ 23.71 confirmed the assigned structure.

Prephytoene alcohol (**3a**) and its pyrophosphate (**3b**) have been well known from a long time and they have been the subjects of biochemical [4] and chemical [5] investigations. However, this is the first report of the isolation of prephytoene alcohol from a natural source.

EXPERIMENTAL

¹H and ¹³C NMR spectra were measured at 270 and 50.28 MHz, respectively, in CDCl₃. The deuterium resonance was used as lock signal. MS were recorded at 70 eV with the source of 150° on a Kratos MS 80 apparatus.

Isolation of prephytoene alcohol (3a). Fresh plants of *M. verticillatum* (2 kg) were homogenized and lyophilized to afford material which was extracted with cold Et_2O . The ethereal extract was treated with 2 N NaOH and then neutralized with 2 N H_2SO_4 and evapd to give a residue (500 mg) which was chromatographed on silica gel column. Elution with petrol- Et_2O (9:1, 90 ml) gave crude 3a (14 mg) which after purification by prep. TLC (petrol- Et_2O 4:1) had $[\alpha]_D + 37.5^\circ$ (CHCl_3 ; c 0.7); MS m/z (rel. int.): 562(4), 544(9), 531(12), 529(17), 493(15), 475(18), 425(16), 407(21), 357(17), 339(12); 271(20), 203(27), 137(43), 69(100); ^1H NMR: δ : 0.95 (m, 1H), 1.15 (s, 3H), 1.35 (m, 1H), 1.61 (s, 18H), 1.69 (s, 9H), 2.01 (br, 24H), 3.53 (dd, 1H, J = 8.5 and 11 Hz), 3.82 (dd, 1H, J = 6 and 11 Hz), 4.95 (d, 1H, J = 8 Hz), 5.11 (br, 6H).

Table 1. ^{13}C NMR data of prephytoene alcohol (**3a**)*

C	C	C	C
1 131.18 <i>s</i>	11 26.62 <i>t</i> ^b	20' 17.83 <i>q</i>	10' 124.05 <i>d</i> ^a
2 124.31 <i>d</i> ^a	12 39.68 <i>t</i> ^c	19' 15.93 <i>q</i>	9' 134.85 <i>s</i>
3 26.70 <i>t</i> ^b	13 136.70 <i>s</i>	18' 15.93 <i>q</i>	8' 39.68 <i>t</i> ^c
4 39.70 <i>t</i> ^c	14 123.32 <i>d</i>	17' 25.67 <i>q</i>	7' 26.62 <i>t</i> ^b
5 134.85 <i>s</i>	15 34.85 <i>d</i>	16' 17.65 <i>q</i> ^d	6' 124.18 <i>d</i> ^a
6 124.18 <i>d</i> ^a	16 17.65 <i>q</i> ^d	15' 63.72 <i>t</i>	5' 134.85 <i>s</i>
7 26.62 <i>t</i> ^b	17 25.67 <i>q</i>	14' 28.61 <i>d</i>	4' 39.70 <i>t</i> ^c
8 39.68 <i>t</i> ^c	18 15.93 <i>q</i>	13' 23.71 <i>s</i>	3' 26.70 <i>t</i> ^b
9 134.85 <i>s</i>	19 15.93 <i>q</i>	12' 37.03 <i>t</i>	2' 124.31 <i>d</i> ^a
10 124.05 <i>d</i> ^a	20 16.61 <i>q</i>	11' 26.62 <i>t</i> ^b	1' 131.18 <i>s</i>

*The numbering system used for **3a** is according to the IUPAC rules for carotenoids. Assignments bearing the same superscript may be reversed.

Acknowledgement —This work was supported by M.P.I. (Ministero della Pubblica Istruzione).

REFERENCES

1. Lanzetta, R., Monaco, P., Previtera, L. and Simaldone, A. (1988) *Phytochemistry*, (in press).
2. Campbell, R. V. M., Crombie, L., Findley, D. A. R., King, Ewart, L. R., Kinnin, R. C., Musto, P. and Gregorio, D. L. (1972) *J. Am. Chem. Soc.* 93, 3257.
5. Altman, L. J., Kowersky, R. C. and Laungani, D. R. (1978) *J. Am. Chem. Soc.* 100, 6174.

Phytochemistry, Vol. 27, No. 7, pp. 2357-2358, 1988.
Printed in Great Britain

0031-9422/88 \$3.00 + 0.00
© 1988 Pergamon Press plc.

COUMARINS FROM THE LEAVES OF *MURRAYA PANICULATA*

TIAN-SHUNG WU

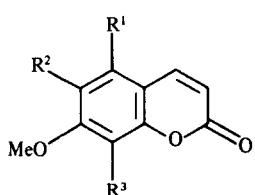
Department of Applied Chemistry, Providence College of Arts and Science, Taichung, Taiwan 40211, Republic of China

(Revised received 23 December 1987)

Key Word Index—*Murraya paniculata* var. *omphalocarpa*; Rutaceae; coumarins; murrayanone; murraculatin.

Abstract—Two new coumarins, murrayanone and murraculatin, together with seven known coumarins have been isolated from the leaves of *Murraya paniculata* var. *omphalocarpa*. The structures of murrayanone and murraculatin were elucidated by spectroscopic methods.

INTRODUCTION


In a previous paper [1], the isolation of a new coumarin, omphamurin, from the leaves of *Murraya paniculata* var. *omphalocarpa* Hayata was reported. Further examination of the leaves of this plant has now resulted in the isolation of 10 further coumarins, two (**1** and **2**) of which are new coumarins.

RESULTS AND DISCUSSION

Murrayanone (**1**), $C_{17}H_{20}O_6$ ($[M]^+$, m/z 306), gave IR absorption bands at 1710 (saturated ketone), 1695 (conjugated δ -lactone) and 1590 cm^{-1} (aromatic). Its UV spectrum [λ_{max} 230.5 (sh), 253.5 (sh) and 305.5 nm] was very similar to that of murraglein [2], i.e. characteristic of a 5,6,7-trioxygenated coumarin (5,6,7-trimethoxycoumarin): $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 224 (sh), 253 (sh), 322; $\lambda_{\text{min}}^{\text{MeOH}}$ nm: 262. 5,7,8-Trimethoxycoumarin: $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 222 (sh), 260, 318; $\lambda_{\text{min}}^{\text{MeOH}}$ nm: 236, 273). The ^1H NMR spectrum of **1** had a pair of doublets ($J = 9.7$ Hz) at δ 6.25 and 7.94. The downfield signal (δ 7.94) confirmed the coumarin moiety and the presence of an oxygen in position 5 [3]. Three sharp singlets at δ 3.87, 3.90 and 4.01 due to nine protons suggested the presence of three methoxy groups. A 3-methyl-2-oxobutyl side chain was indicated by the ^1H NMR data [δ 1.23 (6H, *d*, $J = 6.9$ Hz), 2.85 (1H, *hept*, $J = 6.9$ Hz) and 3.96 (2H, *s*)] and mass fragmentation ions at m/z 249 [$M - \text{COCH}(\text{Me})_2$] $^+$ and 235 [$M - \text{COCH}(\text{Me})_2 - \text{CH}_2$] $^+$.

$-\text{CH}_2\text{COCH}(\text{Me})_2]^+$. According to the above data, mururrayanone could be formulated as 5,6,7-trimethoxy-8-(3'-methyl-2'-oxobutyl) coumarin (1).

Murraculatin (2), $C_{16}H_{18}O_6$, showed the UV absorption characteristics of a 7-alkoxycoumarin [4, 5]. Strong IR absorption bands at 3400 (OH) and 1705 cm^{-1} were indicative of a carboxylic group, and bands at 1690 and 1595 cm^{-1} confirmed the presence of a δ -lactone group.

$$\begin{array}{ll}
 \mathbf{1} & \mathbf{R}^1 = \mathbf{R}^2 = \mathbf{OMe}, \mathbf{R}^3 = \mathbf{CH}_2\mathbf{COCH(Me)}_2 \\
 \mathbf{2} & \mathbf{R}^1 = \mathbf{OMe}, \mathbf{R}^2 = \mathbf{H}, \mathbf{R}^3 = \mathbf{CH}_2\mathbf{C(Me)}_2\mathbf{COOH} \\
 \mathbf{3} & \mathbf{R}^1 = \mathbf{OMe}, \mathbf{R}^2 = \mathbf{H}, \mathbf{R}^3 = \mathbf{CH}_2\mathbf{C(Me)}_2\mathbf{COOMe} \\
 \mathbf{7} & \mathbf{R}^1 = \mathbf{R}^2 = \mathbf{H}, \mathbf{R}^3 = \mathbf{CHCOCH(Me)}_2 \\
 & \qquad \qquad \qquad \downarrow \\
 & \qquad \qquad \qquad \mathbf{OCOCH}_2\mathbf{CH(Me)}_2
 \end{array}$$